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THEORETICAL STUDY OF PRODUCTION OF 

UNIQUE GLASSES I N  SPACE 

1.0 INTRODUCTION AND SUMMARY 

The o v e r a l l  ob jec t ive  of t h i s  program i s  t o  develop a n a l y t i -  

c a l  func t iona l  r e l a t i onsh ips  descr ib ing  homogeneous nuc lea t ion  

and c r y s t a l l i z a t i o n  i n  var ious  supercooled l i qu ids .  The time 
and temperature dependenc r e l a t i onsh ips  of nucleat ion and cry-  
s t a l l i z a t i o n  ( i n t r i n s i c  p roper t ies )  a r e  being used t o  r e l a t e  
g l a s s  forming tendency t o  e x t r i n s i c  parameters such a s  cool ing 

r a t e  through computer simulation.  S ing le  oxide systems a r c  being 
s tud ied  i n i t i a l l y  t o  a i d  i n  developing wori~able k i n e t i c  models 

and t o  i nd i ca t e  the  primary mater ia l s  parameters a f f e c t i n g  g l a s s  
formation. The theory and a n a l y t i c a l  expressions developed f o r  

simple systems i s  then extended t o  complex oxide systems. A 

thorough understanding of nucleat ion and c r y s t a l l i z a t i o n  k i n e t i c s  

of g l a s s  forming systems provides a p r i o r i  knowledge of the  a b i l i t y  
of a given system t o  form a g l a s s .  This w i l l  f a c i l i t a t e  the  dev- 

elopment of improved g lasses  by providing a f irrn t h e o r e t i c a l l  
a n a l y t i c a l  bas i s  f o r  improved manufacturing techniques such as  

in-space manufacture. The u l t imate  ob jec t ive  of space manufac- 

t u r e  is  t o  produce t echn ica l ly  s ign t  Licant g l a s se s  by extending 
the  Earth-l imited regions of g l a s s  formation f o r  cer t i i in  composi- 

t ions ,  o r  by achieving g l a s s  formation i n  o ther  compositions t h a t  

a r e  not g l a s s  formers based on empir ical  Earth observations.  

The l i t e r a t u r e  has been reviewed and c r i t i c a l l y  analyzed, 

and k i n e t i c  equa t io~ls  have been developed f o r  homogeneous and 
heterogeneous nucleat ion and subsequent c r y s t a l  growth. The 

k i n e t i c  r e l a t i onsh ips  have been appl ied t o  known g l a s s  formers 
and non-glass formers. It was found t h a t  the  models q u a l i t a t i v e l y  
pred ic t  earth-observed behavior f o r  these  systems. We can now 

proceed t o  apply the  func t iona l  r e l a t i onsh ips  t o  more complex 

mater ia ls  with the  goal  of u t i l i z i n g  the  in-space environment 

i n  producing technica l ly  improved g l a s se s .  

I I T  R E S E A R C H  I N S T I T U T E  
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2.0 TECHNICAL DISCUSSION 

The concept of g lass  forming tendency derives from the  

de f in i t ion  of g lass .  Morey(1) has defined glass  as an inorganic 

substance i n  a condition which i s  continuous with, and analogous 

to ,  the l iquid  s t a t e  of t h a t  substance; but which, as a r e s u l t  

of having been cooled from a fused condition, has a t ta ined  s o  

high a degree of v iscos i ty  as t o  be for  a l l  p r a c t i c a l  purposes 
r i g i d .  Hence, glass-forming materials a r e  ones i n  which there 

i s  s u f f i c i e n t  t rans ient  bonding i n  the melt t o  produce a highly 

viscous l iquid  upon cooling. In  the general sense, Morey's 
r e s t r i c t i o n  of glasses t o  only inorganic materials can be r e -  

laxed t o  include organic materials as well.  The supercooled 
amorphous s t a t e  of aggregation of matter comprising a glass  i s  
unstable r e l a t i v e  t o  the  so l id  c r y s t a l l i n e  s t a t e .  Therefore, 
glass forming tendency is re l a t ed  t o  the mechanisms and para- 

meters tha t  prevent the l iquid-sol id  transformation from occurring. 

Studies of the c r y s t a l l i n e  transformation can be approached from 
s t ruc tu ra l ,  thermodynamic, and k ine t i c  viewpoints. We have chosen 
t o  adopt a k ine t i c  viewpoint s ince i n  general glass  formation 

i s  not r e l a t ed  t o  whether or  not a given mater ial  can form a 
glass ,  but ra ther  how f a s t  must the l iquid  be cooled from i t s  

fused condition t o  do so. 

Therefore, we consider a mater ial  t o  be a glass  i f  i t  can 

be cooled from i t s  l iquid  s t a t e  rapidly enough t o  avoid a c e r t a i n  

predetermined degree of c r y s t a l l i z a t i o n .  The k ine t i c s  of cry- 

s t a l l i z a t i o n  of a l iquid  a re  determined by two parameters, the 
nucleation r a t e  and the c r y s t a l  growth r a t e .  The l iquid-sol id  
transformation occurs by a two-step process of nucleation of 
c rys ta l l ine  embryos and subsequent growth. Nucleation and growth 

r a t e  temperature dependence a r e  i l l u s t r a t e d  qual i tac ive ly  i n  

Figure 1. Temperature TI = Tm i s  the thermodynamic fusion tempera- 

ture  where the so l id  and l iquid phases a re  i n  co-existence. Above 

Tm the material  i s  i n  the l iquid phase. As the l iquid  i s  super- 

cooled below Tm, growth can theoret ical ly  occur between temperatures 

I I T  R E S E A R C H  I N S T I T U T E  



Figure 1 NUCLEATION AND GROWTH RATE OF CRYS'I'ALS IN GLASS 
AS FUNCTION OF TEMPERATURE 



T; and Tg. However, the embryo nucleation that  i s  necessary 

before growth can proceed only occurs between temperatures T2 

and T4. In the temperature region bounded by T2 and T3 nuclea- 

t ion  and growth occur simultaneously, i . e . ,  conditions a re  

favorable fo r  the complete c r y s t a l l i z a t i o n  transformation pro- 

cess, nucleation and growth. Therefore, the (T2 - T3) temperature 
region i s  most c r i t i c a l  t o  the predict ion of g lass  formation. 

The present program deals with character izing the nuclea- 
t ion  and growth cha rac te r i s t i c s  of several  materials,  and pre- 
sentat ion i n  a form s imi lar  to  Figure 1. With the ana ly t i ca l  
re la t ionships  describing nucleation and c r y s t a l  growth, computer- 

simulated melt-quench experiments provide information regarding 
the cooling r a t e s  necessary fo r  glass  formation ( i . e . ,  cooling 

r a t e s  necessary t o  pass through the (T2 - Tg) temperature region 

rapidly enough t o  prevent c r y s t a l l i z a t i o n ) .  

The k ine t i c  treatment of glass  formation necessar i ly  

s t a r t s  with derivations of nucleation and growth expressions. 

In the following sections these parameters a re  discussed i n  some 

d e t a i l .  Succeeding sections w i l l  deal  with the volume f rac t ion  

transformed and c r i t i c a l  cooling r a t e s ,  i n i t i a l  computer-modeled 
r e s u l t s ,  and a discussion of the problems in  predict ing the 
behavior of complex multi-component mater ials .  

I I T  R E S E A R C H  I N S T I T U T E  
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3.0 KINETICS OF GLASS FORMATION 

Equations descr ib ing  the  k i n e t i c s  of homogeneous nuclea- 

t i o n  a r e  developed i n  t h i s  s ec t i on  with allowance f o r  t r a n s i e n t  

e f f e c t s .  The e f f e c t  of t he  presence of nuc lea t ing  he te rogene i t i es  

a r e  a l s o  discussed.  Models f o r  subsequent c r y s t a l  growth a r e  
presented.  F ina l ly ,  t he  method of r e l a t i n g  t he  volume f rac t  
of mate r ia l  transformed t o  the  c r y s t a l l i n e  s t a t e  t o  appliei:  2001- 

ing r a t e  through computer S imu la t i on ' i s  discussed.  

3 . 1  - Theory of Homogeneous Steady S t a t e  Nucleation 

A supercooled l i q u i d  i s  a  metastable phase r e l a t i v e  t o  
the  s o l i d  phase a s  indicated by f r e e  energy cons idera t ions .  The 

l i qu id  system below the  fus ion  temperature Tm tends toward thermo- 
dynamic s t a b i l i t y  by lowering i t s  f r e e  energy through the  c r y s t a l -  

l i n e  transformation.  The ex i s tence  of a supercooled l i qu id  phase 

-iielow Tm ( i . e . ,  a  g l a s s )  i s  the  consequence of 1)  a sur face  energy 
b a r r i e r  between the  s o l i d  and l i qu id  s t a t e ,  and 2) the  k i n e t i c a l l y  
i nh ib i t ed  movement of molecules t h a t  prevents arrangement i n  an 
ordered system ( i . e . ,  c r y s t a l l i n e  phase).  

The process i n i t i a t e s  as  s t a t i s t i c a l  molecular dens i ty  

f l uc tua t i ons  causing c l u s t e r i n g  of molecules o r  atoms. The 

c l u s t e r s  a r e  c a l l e d  nuc le i ,  embryo p a r t i c l e s  of s o l i d  c rys t a l l i r l e  
(transformed) mate r ia l  ( t r a n ~ f o r m ~ t i o n  t o  t he  s o l i d  c r y s t a l l i n e  

phase can be considered merely a s  molecular rearrangement i n t o  
an ordered s t r u c t u r e ) .  In tending toward thermodynamic s t a b i l i t y  
there  i s  a  volume f r e e  energy decrease a s  an embr,;o i s  c rea ted  

( i . e . ,  i n  the  transformation from l i q u i d  t o  c r y s t a l l i n e ) .  However, 
the  formation of an embryo means t he  formation of a boundary, 
the  embryo-liquid i n t e r f ace ,  with a r e s u l t i n g  system f r e e  energy 
gain  due t o  the  i n t e r f a c i a l  su r f ace  energy. Jackson (2) d iscusses  

the  s t a b i l i t y  of such a nucleus i n  an undercooled l i qu id  with 

respec t  t o  these  two phenomena. For small  embryos the  su r f ace  a r ea  
i s  largc. r e l a t i v e  t o  the  volume, s o  t h a t  t he  sur face  energy domi- 

nates  embryo behavior. Small embryo can decrease the  t o t a l  f r e e  

energy of the system ( l i q u i d  and nuc l e i )  by shr ink ing  t o  reduce 

t h e i r  su r face  a r ea  ( i . e . ,  d i s so lv ing  i n t o  the l i q u i d  melt ). 

I I T  R E S E A R C H  I N S T I T U T E  
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Larger s ize  c rys ta l l ine  embryos a re  control led by the volume 

f r e e  energy term. Large nuclei  can reduce the t o t - 1  f r e e  energy 

of the system by growing larger ,  c rea t ing  more transformed 
c r y s t a l l i n e  material  (more ordered, more s ta) l le) .  A balance 

between these tendencies defines the c r i t i c a l  s i z e  nucleus. 
A nucleated embryo smaller than the c r i t i c a l  s i z e  w i l l  dissolve. 
A nucleated embryo larger  than the c r i t i c a l  s i z e  w i l l  continue 

t o  grow. 

Consider a l iquid melt a t  temperature T w i t h  or&ar f luctua-  

t ions.  This system can be described as  a steady s t a t e  concentra- 
t ion  of ordered regions ( c rys ta l l ine  i n  s t ruc tu re )  of various 
s izes .  The change in  f r ee  energy of the system, AF, due t o  
a loca l  f luc tua t ion  crea t ing  a spherical  n~tcleus may be expressed: 

where r = embryo radius 

nfV = f r ee  energy difference between the l iquid and so l id  

s t a t e ,  per uni t  volume 

~ f ,  = i n t e r f a c i a l  (surface) f r ee  energy between the phases, 
per uni t  area.  

The system f ree  energy change has a maximum value, AF*, 
for  some c r i t i c a l  nucleus radius,  r*. The c r i t i c a l  nucleus 

s i ze ,  r*, represents the  smallest  s i z e  embryo tha t  can grow w i t h  

a decrease in  f r ee  energy t o  form s t a b l e  nuclei .  The c r i t i c a l  

nucleus s i z e  i s  derived as  follows. D i f f e r e ~ t i a t i n g  4F with 

respect t o  r gives 

Expression (1) has a maximum, AF*, fo r  a value of r - r* s a t i s -  

f Y ing 

I l l '  R E S E A R C H  I N S T I T U T E  
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Se t t i ng  t h e  r . h . s ,  of expression (2 )  equal  t o  zero  and so lv ing  

f o r  r = r* we ob ta in  
2 ~ f  

r* r - 
A %  

Evaluating t he  expression f o r  AF (Equation (1))  f a r  r - x* 
y ie ld s  AF*, t he  minimum work requ i red  t o  form a  s t a b l e  nucleus : 

The term AF* is the  rhermodynamic b a r r i e r  t o  t he  nuc lea t ion  

process of forming s t a b l e  nuc l e i .  We now t u r n  our a t t e n t i o n  t o  
obta ining t he  sur face  and volume terms i n  A?* i n  more u se fu l  

form. 

Turnbull (3) has shown t h a t  the  l i qu id -c rys t a l  su r f ace  
tens ion,  ~ f ~ ,  can be r e l a t e d  t o  t h e  hea t  of fus ion,  a h f ,  by t he  
express ion  

where ahf - molar l a t e n t  hea t  of fus ion  of t he  c r y s t a l l i n e  phase 

( c a l  moie-l) 

N - Avagadro's number (N 6 x 1 0 ~ ~  molecules mol=-') 

'm = molar volume of t he  c r y s t a l l i n e  phase (cclmole) 

T:. dimensionless term a r e l a t e s  t he  p ropor t i ona l i t y  of ahf 
and a f s ,  and i s  constant  f o r  a  given type of f l u i d  (3) .  For 

metals a- 2, f o r  more complex mate r ia l s  %- 3.3. Therefore, 
a has an approximate range 

The parameter a i s  defined such t h a t  phys ica l ly  t h e  r e c i p r i c o l  

of a, l / a  , i s  equal  t o  the number of monolayers per u n i t  a r ea  
of c r y s t a l  which would be melted a t  Tm by an enthalpy a9 - bfS .  

The volume f r e e  energy d i f f e r ence  between the  l i q u i d  

and s o l i d  s t a t e s ,  af , i s  expressed:  

I T  R E S E A R C H  I N S T I T U T E  



which i s  est imated f o r  small  supercooling AT = Tm - T: 

where asf i s  t he  molecular entropy of fus ion  (cal mole-'deg-'). 

Since t he  entropy of fus ion  is r e l a t e d  t o  t h e  hea t  of fus ion,  

the  expression f o r  /I£,,, (per  u n i t  volume) can be expressed 

A t  l a rge  degrees of  undercooling AT = Tm - T, t h i s  express ion 
i-s modified by the  f a c t o r  TIT, 

hhf AT T 
bf ( large  AT)= - - (-) (12) v 

Tm 'm Tm 

Limiting our ana lys i s  t o  t he  case  of small  uadercooling, 

use of Equations ( 6 )  and (11) f o r  dfs and gfv , respec t ive ly ,  permits 

expression of r* from Equation (4) i n  more u s e f u l  terms: 

For clusters(embryo) below Tm with r a d i ~ ~ s  r < r*, n u c l e i  form 

and dissolve  because the  sur face  energy involved i n  c l u s t e r  

formation is g r e a t e r  than the  f r e e  energy change accompanying 

s o l i d  formation. For r > r*, continuous n u c l e i  growth w i l l  oc- 

cur s ince  the  sur face  energy i s  growing only p ropor t iona l  t o  r 2 

while the  bulk (volume) f r e e  energy term involved i n  s o l i d  fo r -  
3 mation i s  growing propor t ional  t o  r . Above Tm c r y s t a l l i n e  

I I T  RESEARCH I N S T I T U T E  
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embryo a re  unstable,  C r i t i c a l  c l u s t e r  r a d i i  a re  i l l u s t r a t e d  
in  Figure 2 fo r  various' oxide systems. 

The thermodynamic b a r r i e r  t o  nucleation, AF*, is expressed 

i n  more useful  terms, employing Equation (6)  and (11) fo r  Afs and 

AF* = 

It w i l l  be convenient t o  express AF* i n  terms of another dimen- 
s ionless  parameter, p ,  defined (9) such t h a t  

where k = ~ol tzmann 's  constant. 
R = 1.987 c a l  mole-ldeg-l = gas constant 

The heat of fusion, hhf, thus becomes 

Ahf = AsfTm = RpT, = NkpT, (16 

The parameter B has range 

with g = 1 f o r  monatomic l iquids .  More complex s t ruc tures  have 

higher entropies of fusion, with g approaching p = 10. 

The expression f o r  AF* (Equation 14) i s  e x p r e s s e ~  i n  
terms of p :  

Having developed an expression based on thermodynamics 
and f ree  energy considerations f o r  the minimum work required fo r  

homogeneous nucleat ion ( i .  e . , the thermodynamic b a r r i e r  t o  

nucleation),  we must now derive an expression fo r  the r a t e  of 

homogeneous nucleation. If  it is  assumed tha t  c r i t i c a l  s i z e  
c lus te r s  ( r  = r*) are  formed by s t a t i s t i c a l  molecular f luctuat ions 

the nucleation r a t e  w i l l  be proportional t o  a term involving the 

probabili ty of such a f luc tua t ion ,  exp ( -AF*/~T) .  The steady 

s t a t e  nucleation r a t e  involving a Boltzmann- l i k e  d i s t r ibu t ion  of 

c r i t i c a l  s i z e  nuclei  i s  expressed: 

I I T  R E S E A R C H  I N S T I T U T E  
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where n = number of molecules per u n i t  volume i n  the system 
22 

W 10 ) and 3, i s  a molecular attempt frequency f o r  (n = - v, 
nucleatyon. 

This r e s u l t  i s  derived from thermodynamics and thermosta- 

t i s t i c s .  However, the nucleation process involves molecular 

movement. Therefore, a k ine t i c  or d i f fus ional  b a r r i e r  a l so  

ex i s t s  f o r  the nucleation process. The steady s t a t e  nucleation 

r a t e ,  I. (nuclei  ~ c - ~ s e c - ~ ) ,  i s  expressed i n  general terms 

where A G '  i s  the ac t iva t ion  energy f o r  molecular motion (during 

nucleation) across the embryo-matrix in ter face .  Thus the nu- 

c lea t ion  r a t e  (steady s t a t e )  i s  a function of (1) the number of 
molecular or a tomist ic  71nits avai lable  f o r  nucleation, (2 )  a 

frequency fac to r  describing how often the molecules attempt t o  
jump across the liquid-nucleus boundary, ( 3 )  a thermodynamic 

oa r r i e r  t o  nucleation, the minimum work required t o  form a 

s t ab le  nucleus, and (4) a k ine t i c  b a r r i e r  t o  nucleation, invol- 

ving the ac t iva t ion  energy f o r  molecular rearrangement. 

I f  the molecular motion involved i n  nucleation i s  t rea ted  

as an ac t iva ted  process ( 4 ) ,  a d i f fus ional  r a t e  constant f o r  

nucleation, Dn, can be defined such t h a t  

exp (-AG ' / k ~ )  Dn = a. gn 

where a, is the molecular jump distance.  

Combining Equations (20) and (21) yields  the following 

expression f o r  the steady s t a t e  nucleation r a t e :  

I I T  R E S E A R C H  I N S T I T U T E  

11 



The problem now a r i s e s  a s  how t o  evaluate the nucleation 

d i f fus ional  r a t e  constant, Dn. For l iquids  which c r y s t a l l i z e  

without change i n  composition (single component systems, f o r  

instance) long range diffusion processes a re  not required. A l l  

of the atomic o r  molecular u n i t s  required f o r  the ordered cry- 
s t a l l i n e  s t ruc ture  a re  i n  the loca l  v ic in i ty  of the l iquid-crys ta l  
interface.  This type of transformation i s  termed non-reconstructive. 
The ac t iva t ion  energy, bG1,for  diffusion a t  the l iquid-crys ta l  

in ter face  w i l l  be roughly the same order of magnitude as  the 
ac t iva t ion  energy f o r  viscous flow. This i s  the case f o r  a 

l iquid  transforming t o  so l id  without change i n  composition since 
the movements of the atoms or  s t r u c t u r a l  u n i t s  on the nucleation 

surface i s  s imi lar  t o  the reor ienta t ion  of s t r u c t u r a l  u n i t s  and 

bond switching i n  the flow of a viscous l iquid.  Therefore, 

i n  t h i s  simple case, the nucleation d i f fus ional  r a t e  constant, 

Dn, w i l l  be approximately equal t o  the s e l f  diffusion coeff ic ient  

of the undercooled l iqu id :  

The l iquid  se l f  diffusion coeff ic ient ,  Ds, i s  re la ted  t o  the 
bulk viscosi ty ,  q, through the Stokes-Einstein r e l a t i o n  

where a. i s  the diameter of the diffusing species.  

Therefore, fo r  the case of a s ingle  component substance, 
or a mo:e complex l iquid  t h a t  c r y s t a l l i z e s  with no change i n  

composition, the steady s t a t e  nucleation r a t e  i s  expressed (for  
s m c  1 degrees of undercooling below Tm) 

nkT -16n $Tm 3 
- 

I0 
- exp [ 

3 U ~ T A T ~  
] (25) 

3rr aoJq 

where a l l  terms have been previously defined. 

The general temperature dependence cf the homogeneous 
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nucleation r a t e  described by Equation 25 i s  shown i n  Figure 1. 
For small degrees of undercooling below Tm, AF*, the thermo- 

dynamic ba r r i e r ,  i s  large s ince ilfv, the volume f r e e  energy 

change i n  the transformation i s  small. This r e s u l t s  i n  low 

nucleation ra tes .  With fu r the r  supercooling pfv increases 

u n t i l  A F * ~  A G ' ,  the k ine t i c  b a r r i e r  t o  nucleation. This condi- 
t i o n  r e s u l t s  i n  maximum nucleation r a t e .  For a large AT the  
nucleation r a t e  decreases t o  a negl ig ib le  l eve l  a s  AG'>  > AF*. 

In the case where a compositional change accompanies the 
l iquid-sol id  transformation, the steady s t a t e  nucleation r a t e  

(Equation 25) must be modified t o  account f o r  the long range 
diffusion processes t h a t  a re  required f o r  molecular rearrange- 
ment. This subject w i l l  be t r ea ted  i n  Section 6.0. 

3.1.1 Time-Dependent Homogeneous Nucleation 

In t h i s  discussion t rans ient  e f f e c t s  on nucleation a re  
considered. Glass forming tendency i s  re la ted  t o  how East 

the system can pass through the region of simultaneous nuclea- 
t i o n  and growth ( i . . ,  the (TZ-T3) region shown i n  Figure 1 ) .  

The time spent a t  any pa r t i cu la r  temperature leve l  may then be 

l e s s  than the time required t o  e s t a b l i s h  a steady nucleation 

r a t e  ( i . e . ,  the time required t o  bui ld up the required Boltzmann- 

l i k e  d i s t r ibu t ion  of embryos). 

Incorporation of t ime-dependence i n t o  nucleation theory 
has been t rea ted  by H i l l i g  (5)  and Hammel (4), and takes the 
form 

where It = t rans ient  nucleation r a t e  

I = steady s t a t e  nucleation r a t e  
0 

t = time 

Hammel(4) has expressed the parameter 7 ( a f t e r  Collins(6)) 
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where D i s  the appropriate diffusion coeff ic ient  (given by the 

Stokes-Einstein Equation fo r  transformation without change of 

composition) and a l l  other terms have been previously defined. 

This equation was derived f o r  the idea l  case of instantaneous 
cooling from Tm t o  T. 

H i l l i g  (5)  derived an approximate expressim f o r  T using 
random walk diffusion theory t o  describe the mean time t o  build 
a c r i t i c a l  nucleus: 2 2 n VL r* - 

where VL and Vm a re  the mole volumes of the l iquid  and p rec ip i t a t -  

ing phase, respect ively,  D i s  again the  appropriate diffusion 
coeff ic ient  (D = Ds f o r  c r y s t a l l i z a t i o n  without change i n  composi- 
t i o n ) ,  and X i s  the mole f r ac t ion  of the prec ip i ta t ing  phase i n  
the l iquid  ( i . e . ,  X = 1 f o r  c r y s t a l l i z a t i o n  without change i n  

composit ion).  

~ i l l i g ' s  parameter has been shown (4) t o  more accurately 
describe time-dependence of the nucleation r a t e ,  based on cor- 

r e l a t i o n  with experimental r e s u l t s .  Therefore, we s h a l l  employ 
Equations (26) and (28) when simulating nucleation i n  computer 

generated melt-quench experiments. 

The nature of t rans ient  e f f e c t s  on nucleation r a t e  is  
i l l u s t r a t e d  qua l i t a t ive ly  i n  Figure 3 .  Due t o  d i f fus ional  e f f e c t s  

successively longr times are  required t o  achieve steady s t a t e  

nucleation a t  successively lower temperatures. If  the hypotheti- 
c a l  mater ial  whose nucleation cha rac te r i s t i c s  a re  shown i n  Figure 

3 i s  cooled from T, t o  T1, detectable  nucleation would be avoided 

a t  any cooling rate .*  However, a detectable l eve l  of homogeneous 

nucleation occurs between temperatures T1 and T2. In order t o  
avoid t h i s  nucleation i n  a melt-quenching experiment the tempera- 

ture  region T1 - Tq must be passed through i n  l e s s  than t i n e  t2. 

* For many materials T1/Tm-.8 
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I f  t h i s  g lass  were successfully quenched t o  temperature T6, 

f o r  instance,  it could be held a t  t h i s  temperature l eve l  f o r  a 
period of time t6 before detectable nucleation would occur 

(e .g. ,  fo r  annealing). 

A s  s h a l l  be discussed i n  Section 6.0, the t r ans ien t  

nucleation fbrmulation provides one possible way of dealing with 
multicomponent systems where long range diffusion processes 
a re  required f o r  molecular rearrangement. 

3 . 2  Heterogeneous  nucleation 

Thus f a r  we have only t r ea ted  the case of homogeneous 

nucleat ion i n  pure substances f r ee  of impurj t i e s ,  insoluble 

pa r t i c l e s ,  e t c .  Foreign surfaces present i n  the l iquid ,  such 
as container walls or  insoluble pa r t i c l e s ,  however, tend t o  re- 

duce the b a r r i e r  t o  n u c l e a t i ~ n  represented by the surface energy 

between the l iquid  and so l id  phases. As a r e s u l t  the c r i t i c a l  
11  embryo s i z e  i s  reduced and the supercooling temperature" i s  

raised.  The "supercooling temperature1' i s  the temperature T2 

where the f i r s t  detectable nucleation i s  observed upon cooling 
from the  melt. This e f f e c t  i s  shown qua l i t a t ive ly  i n  Figure 4 .  

A t  heterogeneous surface s i t e s  the computation of the 

c r i t i c a l  embryo s i z e  becomes complicated because of the various 
surface energies involved a2d the par t icu lar  geometry of the 

embryo surface.  Furthermore, the we t t ab i l i ty  of the foreign 
surface by the l iquid  must be taken in to  account. 

For our present purposes we s h a l l  only t r e a t  the e f f e c t  

of heterogeneous nucleation qua l i t a t ive ly ,  following the t r e a t -  

ment of several  authors (references 2 , 4 , 5 , 7 - 9 )  i n  order t o  il- 
l u s t r a t e  the nature of the analy t ica l  expressions. 

The work term f o r  heterogeneous nucleat ion,  AF*Q, i s  

given generally as 
A F2 = f ( 0 )  * AF* ( 2 9 )  
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where the  fac tor  f ( 8 )  i s  expresst;! 

2 + cose ) (1 - cose ) 2 
f(Q) = ( 4 (30) 

The angle 8 i s  a function of the balance of surface tensions and 

i s  given by: 

cose = 'SL - =SR 

where O ~ L ,  u sR  and uv a re  the i n t e r f a c i a l  energies between 
the sol id- l iquid,  solid-impurity surface,  and the liquid-impurity 
surface,  respectively.  

The lowering of the net i n t e r f a c i a l  energy i n  hetero- 
geneous nucleation depends on how well  the impurity surface wets 
the nucleating phase in  the presence of the  l iquid .  

Therefore, i f  heterogeneous nucleation s i t e s  a re  present 

the minimum work required (thermodynamic b a r r i e r  t o  nucleation) 

t o  form a s tab le  nucleus i s  reduced. The treatment i s  fu r the r  
complicated by the f a c t  t ' l a t  the concentration of nucle i  de- 

r iv ing  from a heterogeneous mechanism w i l l  be some function of 

the concentration of impurity s i t e s  present,  and not given 

simply by a nucleation r a t e  formulation. 

3 . 3  Crystal  Growth Kinetics 

Once formed by a homogeneous or  heterogeneous nucleation 

mechanism, s t ab le  nucle i  w i l l  continue t o  grow a t  a r a t e  determined 

primarily by the r a t e  a t  xnich the atoms necessary f o r  growth 

can d i f fuse  t o  the surface of the c rys ta l ,  and by the ease with 

which they can f ree  themselves from the a t t r a c t i o n s  of t h e i r  

neighbors i n  the l iquid  phase and form new bonds i n  the spec i f ic  

posit ions determined by the s t r u c t * ~ r e  of the growing c r y s t a l  (10). 
The fundamental concept here i s  tha t  growth is  considered i n  

terms of molecular rearrangement. 

Crystal  growth i s  e i t h e r  interface-control led o r  d i f -  

fusion-controlled.  Interface-controlled growth occurs when 

the r a t e  control l ing s t ep  occurs a t  the l iquid-crys ta l  in ter face .  
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This normally occurs f o r  s ingle  component glasses ,  f o r  instance,  

where only short  range molecular rearrangement a t  the l iquid-  
c r y s t a l  in ter face  i s  necessary,. Diffusion-controlled growth 
occurs when the r a t e  control l ing s t e p  is  the long range diffusion 

of a given species i n  the bulk l iquid.  Thus, diffusion-controlled 

growth would normally apply i n  the case where cry . . ta l l iza t i im 

i s  accompanied by a large change i n  composition, such a s  f o r  
complex multicomponent systems. 

3.3.1 Interface-Controlled Growth Kinetics 

For t h i s  work we s h a l l  . r e s t r i c t  oursel=e.. t o  the case 
of c r y s t a l l i z a t i o n  withogt change i n  composition as  we have 

done fo r  the case of homogeneous nucleation in  the preceding 
sections.  Thus, we w i l l  t r e a t  i n  t h i s  sect ion only the mechanisms 
and k ine t i c s  of interface-controlled growth. 

Tvo basic mechanisms have been proposed f o r  interface-  
controlled growth: continuous growth and l a t e r a l  growth (11). 

In  continuous growth the c r y s t a l  in ter face  advances by molecular 

iiicorporation which can occur with equal probabi l i ty  everywhere 

(except f o r  ce r t a in  ar. isotropic e f f e c t s ) .  Lateral  growth occurs 
e i t h e r  by a two-dimensional nucleation mechanism o r  by a screw 

dis locat ion spiral .  growth ramp mechanism depending on the cry- 

s t a l  perfection. 

In systems which c r y s t a l l i z e  without change i n  composi- 
t i o n  the nature r;f the l iquid-crys ta l  in ter face  strongly inf lu-  

ences the k ine t i c s  and morphology of c rys ta l l i za t ion .  Different 

models f o r  in ter face  control led growth are  each based on a 
d i f ferent  assumption concerning the in ter face  and the nature of 

the s i t e s  on the in ter face  where atoms are  added or  removed. 
Again, i t  i s  importaat t o  think of c r y s t a l  growth a s  merely a 

molecular rearrangement process. 

The general form of the growth veloci ty  f o r  a l l  i n t e r -  
face-controlled growth processes is :  
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where: f  = f r ac t ion  of preferred growth s i t e s  on the in ter face  

( i .e . ,  f rac t ion  of s i t e s  avai lable  f o r  growth, 

% frequency fac to r  fo r  molecular transporc a t  the 
l iquid-crys ta l  in ter face  (during growth). 

= distance advanced by the in ter face  i n  a :init k i n e t i c  

process (u molecular diameter). 

OG f r ee  energy change accompanying the 1'- .'-d-crystal 
transformation 

AG" = f r ee  energy of ac t iva t ion  or k ine t i c  1 . - .  ' e r  f o r  

the movement of an atom across the l iqufd-crystal  
in ter face  during c r y s t a l l i z a t i o n  ( i .e . ,  growth). 

The k ine t ic  term AG" involved i n  growth is not necessari-  
l y  equal t o  (or even the same order of magnitude) as the k i n e t i c  

term involved i n  nl-.cleation, A G '  (Equation (20)). Growth may be 

governed by atomic movements from a great  distance away from 

the l iquid-crys ta l  interface.  Nucleat ion ( i n i t i a t i o n  of the  
transformation) i s  governed by atomic movement r e l a t i v e l y  close? 

t o  the developing nucleus. 

Assuming tha t  we can t r e a t  the molecular movements 
involved i n  c r y s t a l  growth as  simply ac t iva ted  processes, we 
can define a diffusion coeff ic ient ,  or  r a t e  constant, f o r  the 

molecular rearrangement 

i n  a manner s imi lar  t o  the case of nvcleation described i n  
Section 3.1. The general interface-control led growth expression 

(Equation (32)) thus becomes : 
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Experience on a var ie ty  of pure substances which cry- 
s t a l l i z e  without change i n  composition has indicated tha t  the 
slow, r a t e  control l ing s t e p  i n  the in ter face  growth process i s  
the same molecular process t h a t  occurs in  the bulk l iqu id  above 
the thermodynamic fu r i r ;  temperature, Tm(3). Therefore, i n  
t h i s  most s t raight torwarr~ of cases .  the r a t e  c o n s t m t  f o r  i n t e r -  
face-controlled growth, 

Dg , w i l l  have approximately the same 
value as  the l iquid s e l f  d i f fus ioo  coeff ic ient ,  Ds, and thus be 
approximated by the Stokes-Einstein r e l a t i o n :  

The f ree  energy change accompany4ng the l icu id-crys ta l  
transformation, AG, i s  given by 

The growth velocity f o r  interface-control led growth without com- 
posit ion change i s  thus expressed 

or in  terms of the g parameter (hsf = Nkg - q) 

We w i l l  now br i e f ly  t r e a t  the various models t h a t  have 
been propased fo r  interface-control led growth. The models and 

discussion presented have been taken from Uhlmann (12). 

3.3.1.1 Normal (Continuous) Growth 

In normal or  continuous g r m t h  atoms can a t tach  t o  or  
be removed from any s i t e  on the interface.  T h u ~ ,  there  a re  no 

preferred growth s i t e s  i n  the in ter face ,  and f i n  Equation (37)  
becomes uni ty.  
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kT - AS fAT u =7 [ 1  - exp ( 
mao ? RT 

) I  

For small depar t -~ res  from equilibrium, t h i s  model predicts  a 

l inear  r e l a t ion  between growth ra te ,  u ,  and undercoolirg , AT. 

For t h i s  model t o  cor re la te  with experimental data  the l iquid-  

c rys ta l  in ter face  must be rough on an atomic scale .  

3.3.1.2 Screw Dislocation Growth 

In the screw dis locat ion model growth occurs a t  s t e p  
s i t e s  provided by screw dis locat ions in tersec t ing  the  in ter face .  

The f rac t ion  of preferred growth s i t e s ,  f i n  Equation (37), 
is expressed 

where it has been assumed t h a t  only molecular transport  within 
a molecular diameter, ao, of the dis locat ion ledge r e s u l t s  i n  
attachment. F >r small undercooling, AT, t h i s  model predicts  

2 
.- growth r a t e  which var ies  with AT . For the screw dis locat ion 
model t o  apply, the interface must be smooth on an atomic scale ,  

and be re l a t tve ly  imperfect i n  the crystallographic sense. 

3.3.1.3 Surface Nucleation Growth 

According t o  t h i s  model growth takes place a t  s t e p  s i t e s  
provided by two-dimensional nucle i  formed on the interface.  The 

growth r a t e  can be expressed 

p z A9 exp (-BITAT) (42 

where the exponential constant i s  
r )  

The term aE i s  the spec i f i  edge rurface energy of the nucleus. 

The frequency fac tor ,  $, can be derived from the growth r a t e  
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constant : 

The growth veloci ty  predicted by t h i s  model should vary exponenti- 

all;? with the undercooling, AT, and fo r  small CT should be unob- 
servably low. For t h i s  model t o  correspond t o  experimental ob- 
servat ion the in ter face  must be smooth on an atomic sca le  and 
be defect-free.  

This comment and the foregoing discussions regarding 
expected morphology f o r  each of interface-control led growth 
models w i l l  have appl icat ion i n  t h e  experimental s tages of our 
NASA program ( to  be discussed l a t e r ) .  For materials which have 
not been extensively studied, morphological s tudies  (SEM, e t c . )  
w i l l  indicate,  by inference, which growth model appl ies  t o  a 

given mater ial .  Ut i l iz ing  empirical r e s u l t s  of melt-quench 

experiments t o  cor re la te  with our k ine t i c  relat ionships w i l l  

help t o  indicate  how space processing can be u t i l i z e d  t o  pro- 

duce glasses  unobtainable on Earth. 

3 . 3 . 2  Significance of Entropy of Fusion 

As discussed by Uhlmann (12) growth ra t e s  depend c r i t i c a l -  
l y  on the molecular s t ruc ture  of the l iquid-crys ta l  in ter face .  
The in ter face  s t ruc ture ,  i n  turn,  depends s ign i f i can t ly  on a 

bulk thermodynamic property, the molecular entropy of fusion, 

For materials characterized by low entropies of fusion 
(bsf < 2R) the l iquid-crys ta l  in ter face  should be rough on an 
atomic scale ,  defects should not a f f e c t  growth, and normal growth 

k ine t ics  a re  predicted ( i . e . ,  Equation (40)). On the sca le  of 

l i g h t  microscopy the crys ta l - l iquid  in ter face  should be non- 
faceted.  

For materials characterized by large entropies  of fusion 
(hsf > 4R) faceted in ter face  morphologies should be observed, 

defects should be important t o  growth, and the k ine t i c s  of the 
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normal growth model should not apply. Except as limiting cases, 
the observed growth veloci t ies  for large Asf materials shocld 
not agree well with behavior predicted by screw dislocation 
model or the surface nucleation model either.  
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4.0 VOLUME FRACTION TRANSFORMED AND CRITICAL COOLING RATES 

Glass forming tendency can quant i ta t ive ly  be describe31 
i n  terms of the volume f rac t ion  of c rys ta l l ine  mater ial  formed 

during a ce r t a in  quenching operation. Uhlmann (13) has exp.-e~-  

sed the volume f rac t ion ,  vf,  c rys ta l l i zed  i n  time, t ,  (for  small 

vf )  as  
3 4 vf m 1 / 3  nI p t (45 

where I = nucleation r a t e  (nuclei  cc-'secol) 

= growth veloci ty  (cm sec- l )  
t r time (sec) 

This r e l a t i o n  i s  val id  f o r  interface-control led growth, and 
thus appl ies  t o  s ingle  component or  congruently melting ( i .e . ,  

without change in  composition) compounds. 

The c r i t i c a l  cooling r a t e  f o r  g lass  formation, i . e . ,  the 

minimum cooling r a t e  necessary t o  avoid a ce r t a in  volume frac-  
t i o n  of transformed material ,  can be estimated by a procedure 

employed by Uhlmann (13). T-T-T (tim-temperature-transformation) 

curves a re  constructed as  i l l u s t r a t e d  qua l i t a t ive ly  i n  Figure 5, 
Using Equation (45), the time required t o  transform a given 
amount of material  i s  calculated as  a function of temperature. 

A volume f rac t ion  transformed vf = is  regarded as  just-  

detectable.  The data  are..presented graphically as  AT vs t i n  

the T-T-T plot .  The c r i t i c a l  cooling r a t e  can be approximated 
(13) by the expression 

dT ae ATN 

=tN c r i t i c a l  

where ATN = Tm - T~ 
TN - temperature a t  the nose of the T-T-T curve 

rN = time a t  the nose of the T-T-T curve 
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Figure 5 TIME-TMPERATURE-TRANSFORMATION CURVE 
(TAKSN FROM LWIMANN (13) ) 



5.0 COMPUTER MODELED RESULTS FOR SELECTED SYSTEMS 

The k ine t ics  developed f o r  nucleation and growth a re  

now applied t o  several  mater ials  systems. The well-characterized 

s i l i c a ,  Si02, system i s  invest igated f o r  the purpose of deter-  

mining the r e l a t i v e  importance of the various k ine t i c  and thermo- 

dynamic parameters i n  cont ro l l ing  transformation behavior. The 
B203 system i s  studied t o  determine i f  the derived k ine t i c  re-  

la t ionships w i l l  predict  i t s  good g lass  forming q u a l i t i e s ,  and 
imply a physical reason f o r  the  observed behavior. The alumina, 

A1203, system is studied t o  determine i f  the  k ine t i c s  can pre- 
d i c t  the poor glass  forming tendency t h a t  i s  observed on ear th ,  

and imply a physical reason f o r  t h i s  phenomenon. 

5.1 The S i l i c a  System (s i02)  

The pertinent materials propert ies  f o r  the s i l i c a  system 
t o  be used i n  the derived k i n e t i c  nucleation and growth expres- 

sions are  tabulated i n  Table I. Viscosity data f o r  the s i l i c a  

system are shown i n  Figure 6, compared with v iscos i ty  data f o r  

other oxide systems. 

These materials parameters were inser ted  in to  the derived 

nucleation and growth k ine t ics  (Equations (25), (26), (28), 
and (378, with r e s u l t s  i l l u s t r a t e d  i n  Figures 7 and 8. The 

low temperature cut-off i n  the nucleation r a t e  has been discus- 

sed previously. Figure 7 indicates  the r e l a t i v e  time sca le  of t h i s  

e f f e c t .  A nucleation r a t e  of 1 nucle i  cc-'sec-l has a r b i t r a r i l y  

(but by popular custom (5))  been taken as  the leve l  of detectable  

nucleation. As i l l u s t r a t e d  i n  Figure 7,  detectable homogeneous 

nucleation f o r  Si02 does not occur upon cooling from the melt 

(T,) u n t i l  roughly 1700" t o  1750°K. Above about 1200°K the 

thermodynamic ba r r i e r  to  nucleation controls  behavior. Below- 

1200°K the k ine t i c  (diffusional)  f ac to r  dominates. The peak 

growth r a t e  f o r  Si02 (Figure 8) i s  roughly 40 d(/min, and occurs 
a t  roughly 50°K undercooling below Tm. The c r y s t a l  growth r a t e  

i s  seen t o  be zero a t  Tm, the  thermodynamic fusion temperature. 

For small values of supercooling (temperatr r e s  during quench 
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TABLE I 

MATERIALS PARAMETERS FOR SiO, 
..I 

bhf = 2000 cal mole-' 
- 

Tm = 2000°K 

- - Ahf = 1 cal mole -1,-1 
ASf 7 

0 

= 2.5 A (-0-0 distance in Si04 tetrahedron) 

f = 1 (normal growth assumed) 
X = 1 (pure substance) 

'm = V L  - 27.6 cc mole-I 
T (viscosity): see Figure 6 
a = 2.5 (representative value) 
N = 6 x 1 0 ~ ~  molecules mole-' 

n - - - -  - 2 x 1 0 ~ ~  molecules cc -1 
'm 

AT = Tm-T 

k = ~oltzmann's constant = 1.38x10-~~erg c-' = 3.3x10-~~cal C-l 

R = gas constant 1.987 cal mole-'deg-l 
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F i g u r e  7 NUCLEATION RATE SHOWING TRANSIENT EFFECT FOR 
SILICA 
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below T,), the f r ee  energy term i s  dominant and increases with 

increasing supercooling ( i . e . ,  the growth r a t e  increases with 

decreasing temperature). A t  large degrees of supercooling 
below T,, the k ine t i c  fac tor  (diffusion) begins t o  control,  

and the growth r a t e  begins t o  decrease with decreasing tempera- 

ture .  A t  temperatures f a r  below T, the diffusion k ine t i c s  
dominate: the extremely high v iscos i ty  i n h i b i t s  c r y s t a l  growth, and 
the growch r a t e  dro s t o  zero. 

The c r i t i c a  ! temperature region f o r  g lass  forming ten- 
dency, the region of simultaneous nucleation and growth, ts 
i l l u s t r a t e d  qua l i t e t ive ly  i n  Figure 9 i n  a " T 2 - ~ 3 "  region plo:. 
I f  homogeneous nucleztion only i s  considered, i t  i s  observed 
tha t  Si02 g lass  formation depends on the a b i l i t y  t o  pass through 

the temperature rangeb1600-1700°K rapidly.  The t r ans ien t  

behavior shown in  Figure 7 indicates  t h a t  t h i s  c r i t i c a l  region 
3 must be traversed i n  a time l e s s  than approximately 5x10 sec 

t o  avoid the l iquid-crys t a l  phase transformation. This time 

sca le  limit i s  readi ly a t ta ined  by commercial ear th  processing 
methods. 

5 . 2  Hypothetical Glass-Parametric Study 

The computer software t h a t  has been developed t o  generate 

nucleation and growth behavior provides a convenient means of 

determining which mater ials  parameters a re  of primary importance 

i n  determining g lass  forming tendency. This information i s  

c r i t i c a l  t o  our overa l l  task of investigat:ing the g lass  forming 
tendency of unique systems,or i n  synthesizing systems f o r  space 
manufacture . 

For t h i s  purpose a hypothetical  g lass  was postulated 

tha t  possessed the viscosity-temperature behavior of Si02, and 
the parameters a and B were varied over r e a l i s t i c  ranges ( i . e . ,  

2 - < a 5 3 ,  1 - 4 la 5 l o ) ,  The resu l t ing  parametric graphical 

representations are  presented i n  Figures 10 and 11, and serve 
t o  indicate  the importance of these parameters on the (steady 

s t a t e )  nucleation r a t e .  The horizontal  l i n e  i s  the l eve l  of 
3 de tec tab i l i ty  of nucleation (assumed t o  be 1 nucleus per cm per 
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sec).  The temperature a t  which the nucleation curves in te r sec t  
the horizontal  level  of de tec tab i l i ty  l ine  is  temperature T2 
shorn i n  Figure 1. Above T2 no nucleation should be observable. 

Since nucleation and growth occur simultaneouely between T2 and 

T3, we are  interested i n  decreasing (T2-T3) ; therefore,  decreasing 

T2 w i l l  enhance glass forming tendencies. Additionally, we a re  
- 

interested i n  material  parameters t h a t  tend t o  decrease the 

slope of the n u l e a t i o n  rate-temperature re la t ionship  i n  the 
region jus t  below temperature T2 ( t h i s  is  important due t o  i mita- 
t ions i n  cooling ra t e s  a t ta inable) .  

Figure 10 i l l u s t r a t e s  the e f f e c t  of a f o r  the hypothetical  
glass with the 8 parameter fixed a t  unity.  It i s  observed t h a t  

decreasing I decreases Tp, and thus tends t o  increase g lass  

forming tendency. 

Figure 11 i l l u s t r a t e s  the e f f e c t  of /3 f o r  the hypothetical  
glass,  with the a parameter f ixed a t  a value of a = 2.  It is  
observed tha t  the $ parameter has a la rger  e f f e c t  on the nuclea- 

t ion r a t e  than does the a parameter. Temperature T2 decreases 
with increasing 9. 

It i s  apparent tha t  f o r  enhancing g lass  forming ten- 
dencies large p and small a parameters a re  required. This i s  

based on the observed decrease i n  tne temperature Tg and de- 
crease i n  the slope of the nucleation curve near T2. This can 

also be seen by considering the expression f o r  AF*, the f ree  

energy of a c r i t i c a l  embryo, which represents the magnitude of 

the ba r r i e r  t o  nucl-eation. A large p represents a material  with 

a large heat of fusion; a complicated s t ruc ture  with a large 

amount of energy involved i n  the phase change. A small a 

represents a material  with a large heat of fusion r e l a t i v e  t o  

the sol id- l iquid i n t e r f a c i a l  f r ee  energy. Values fo r  @ (or nsf)  

fo r  several  systems are  shown i n  Table I f .  

Thus f a r  we have only discussed thermodynamic parameters 

a and $. Since ther  a l so  e x i s t s  a k ine t ic  b a r r i e r  t d  nucleation 
and growth i t  would be expected the viscost iy ,  q ,  would be a 
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TABLE I1 

PERTINENT PROPERTIES OF VARIOUS MATERIALS -- 

Material AS£ 
(cal/mole O K )  callmole 1 @ Tm<"K) 

Si02 

B2°3 
Ge02 

~ t - A l ~ 0 ~  

lithium s i l i c a t e s  

potassium s i l i c a t e s  

CaO . A1203. 2 S iOZ 

Soda-Lime glass  

Metals 
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parameter of primary importance. Uhlmann (13) has discussed 

the importance of two k ine t i c  parameters on the  tendency of a 
material  t o  be a glass  former: (1) a high v iscos i ty  a t  the 

fusion temperature, Tm, and (2) a rapidly r i s i n g  v iscos i ty  with 

decreasing temperature below Tm ( i .e . ,  large dtl/dT). The l a t t e r  

i s  r e l a t ed  t o  the posi t ion of Tm r e l a t i v e  t o  the g lass  t r a n s i t i o n  
temperature, 

Tg 
. We w i l l  not e laborate  onthe  parameters ri and 

dq/dT i n  a parametric study. However, they w i l l  be considered 

i n  subsequent discussions of the g lass  forming tendenci-  s of 

B203 and A1203. 

5.3 The B,02 System 
L 4 

In t h i s  sect ion nucleation and growth k ine t i c s  a re  ap- 
pl ied t o  the B203 system t o  predict  the observed good g lass  

forming qual i ty  f o r  t h i s  material ,  and t o  imply a physical reason 

f o r  t h i s  phenomena. Qual i ta t ive i n d i c a t i o ~ s  of g lass  forming 
tendency can be obtained by considering only steady s t a t e  nuclea- 

t ion ,  ignoring f o r  the moment t rans ient  e f f e c t s .  Steady s t a t e  

data  represent an upper bound f o r  nucleation behavior. 

The pert inent  mater ial  properties f o r  the B ~ O ~  system 
a re  tabulated i n  Table 111. The viscosi ty  of B203 i s  i l l u s t r a t e d  

in Figure 12.  Over the temperature range 250-500°C the l i t e r a -  

t u r e  data shown were averaged and f i t  t o  a 6 th  degree polynomial 
expression: 

log 7 = AT~+BT~+CT~+DT~+ET~+FTSG (47) 

with r e s - ~ l t i n g  coe f f i c i en t s :  

A = 2.24~10. '~  

B =-4.56~10 - 11 
C = 3 . 8 2 ~ 1 0 ' ~  

D =-I. 73x10-~ 
E = 4 . 8 1 ~ 1 0 ~ ~  
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TABLE 111 

MATERIALS PARAMETERS FOR BqOP 
L. 

Ahf = 5900 cal  mole-' (reference 21) 

Tm = 450°C = 723OK 

Ahf -1 -1 = = 8 . 2  ca1 mole K 
m 

8 As f = = 4.1 
0 

= 2 . 5  A (assumed) 

f = 1 (assumed normal growth) 

X = 1 (pure substance) 

a :  variable, 2 < a < 3 - - 
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The computer-generated v iscos i ty  data f o r  B203 a re  a l so  shown 

i n  Figure 1 2  f o r  comparison. 

These material  propert ies  were inser ted  i n t o  our computer 

software and the steady s t a t e  nucleation r a t e  f o r  B 0 computed 
2 3 

and plot ted f o r  variable a as  i l l u s t r a t e d  i n  Figure 13. The 

conpcted growth r a t e  f o r  B 0 i s  i l l u s t r a t e d  i n  Figure 14. Glass 
2 3 

forming tendency f o r  B203 i s  deduced from considerations of the 

nucleation and growth behavior shown i n  these two Figures. 

Referring t o  the growth curve (Figure 14), it i s  observed 

tha t  the growth r a t e  f o r  B203 i s  zero a t  T,, peaks a t  roughly 700°K, 

and decays t o  zero by roughly 62S°K. The steady s t a t e  nucleation 

r a t e  f o r  B 0 (Figure 13) was computed f o r  the known P parameter 
2 3 

(P = 4.1) and f o r  a probable range of the a parameter. It i s  

observed t h a t  f o r  a l l  values of a ,  the nucleation r a t e  i s  always 

below the detectable l i m i t  (assumed 1 nucleus per cc per sec) ,  and 

thus e f fec t ive ly  zero. Therefore, although B203 exhib i t s  a theo- 

r e t i c a l  growth r a t e  much higher than Si02 (see Figure a), c r i t i c a l  

s i ze  c r y s t a l  embryo are  never homogeneously nucleated. These 

analy t ica l  r e s u l t s  predict ,  therefore,  the B203 would be an excel- 

len t  glass  former since i t  can not be made t o  nucleate and c rys ta l -  

l i z e  when cooling from the melt, regardless of the cooling r a t e .  

This prediction i s  supported by empirical evidence indicat ing t h a t  
c r y s t a l l i z a t i o n  of B203 from a dry melt has never been observed. (12) 

The parameters of primary importance i n  describing glass  

forming tendency from a k i n e t i c  standpoint a re  1 )  the  magnitude 

of the viscosi ty  a t  Tm, 2 )  the slope of the viscosity-temperature 

function below Tm, d q / d ~ ,  and 3 )  the magnitude of the molecular 
entropy of fusion Asf ( re la ted  t o  AHf and P ) .  The former two a re  

re la ted  t o  the diffusional  b a r r i e r  and the l a t t e r  t o  the thermo- 

dynamic b a r r i e r  t o  the phase change process, l iquid  s t a t e  t o  

c rys ta l l ine  s t a t e .  The magnitude of the melting point v iscos i ty  

fo r  B203 is  two orders of magnitude l e s s  than t h a t  of Si02 (see 

Figure 6 ) .  This would indicate  tha t  nuclea t ion-crys ta l l iza t ion  

should occur more readily f o r  B203 (lower d i f fus iona l ,  k ine t i c  
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b a r r i e r ) .  Since t h i s  i s  not the case, the f ac to r s  inhibf tfng 

the phase change i n  B203 a re  the high molecular entropy of 

fusion (8.2 f o r  B203, roughly 1.0 for  Si02),  and the steepness 

of tk viscosi ty-  temperature r e l a t i o n  below Tm f o r  B203 (dq/dT 

greater  fo r  B203 than fo r  Si02 as shown i n  Figure 6) .  

To i l l u s t r a t e  the r e l a t i v e  importance of gsf and d q / d ~  
i n  inhib i t ing  nucleation and c r y s t a l l i z a t i o n  i n  the B203 system, 

we have used our  computer system t o  describe the nucle,ation 

behavior of a hypothetical  l iquid  with the viscosity-temperature 

r e l a t i o n  of B203, but with the molecular entropy of SiOg ( i . e . ,  

A S  = 1 (hir hypothetical  g lass  then exhib i t s  the k ine t ics  of 

a material t h a t  w i l l  not nucleate and c r y s t a l l i z e  (B203) and 

the thermodvnamics of a materia'l t h a t  w i l l   nucleate and cry- 

s t a l l i z e  (SiOZ). The nucirat ion behavior of t h i s  hypothetical  

material  i s  shown in F i g ~ r e  15, with the behavior of B203 

(hsf = 8 . 2 )  a l so  shown for reference. It i s  observed tha t  the 

nucleation r a t e  of the hypot-hetical l iquid  i s  now above the 
detectable l i m i t ,  This by lowering the thermodynamic ba r r i e r  

t o  the phase chang2 f o r  B Z O j  ( e ,  ~s~ or 6 )  we are able t o  

produce a hypotketical  glass  t h a t  bL1l  nucleate.  The growth 

r a t e  for t h i s  hypothetical  l iquid  was computed and i s  shown i n  

Figure 16. Comparing tt:? rel.ati.ve posi t ions of the nucleatf  on 

and growth curves f o r  t h i s  k,ypothetical l iquid  (Figures 15 ard 

16) ir-dicates i t s  g lass  forming q u a l i t i e s "  For convenie~c.e 

these nucleat-ios and gr,owch cmves are qua l i t a t ive ly  sketched 
I I i,n a 12-T3  regiorL1' plot  i : ~  Flgure 1 7  It i s  observed t h a t  a 

small region of simqJLtaneolrs a.rzcleation arid growth e x i s t s  hetween 

625 arid 650°K. 'Thus c rys ta l l i zed  BZOj  c m l d  be obtained upon 

cooii3g from the melt (by  holdl-g the Liquid between 625 and 650°K) 

if the molecular entropy of f s s lon  (or heat of fusion) could 

be reduced s u b s t a ~ , t i a l l y ,  This hypothetical  example i s  pre- 

sented as an i:.;dicati.or. of how w e  might eventually be able t.o 

synthesfze materials t o  exh ib i t  des i red  ~ucle~rion-crystallization 

tendencies , 
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5.4 The A1,0, System 
& .- 

Nucleation and growth k ine t ics  a l so  have been applied 
t o  the A1203 system. This system exhib i t s  very poor (non-existent) 
glass forming tendencies by conventional e a r t h  methods. The 

aim here i s  t o  predict  t h i s  poor g lass  forming tendency of A1203 

and imply  a physical reason f o r  t h i s  phenomenon. 

The pertinent materials properties f o r  the alumina 
system are  tabulated i n  Table I V .  The major d i f f i c u l t y  i n  des- 
f ~ r i b i n g  nucleation and growth k ine t ics  f o r  the A1203 system i s  

the complete lack of viscosi ty  data below the fusion temperature, 

Tm. This s i tua t ion  e x i s t s  since Ai203 has never been observed 
3n ea r th  as a glass  ( i . e . ,  a t  temperatures below T,). Above 

1 7  
L I the melting point, however, data have been reported,  and are  

i l l u s t r a t e d  in  Figure 6 .  With no reference pcint such as  the 
glass  t r ans i t ion ,  T avai lable ,  the problem remains a s  t o  the 

g ' 
shape of the viscosity-temperature curve fo r  A1203 below Tm. 

For our purposes we have chosen two cases: I) extrapolating 

below Tm with the shape of the B203 curve ( i . e . ,  s teep d ~ / d ~ )  
and 2) extrapolating below Tm with the shape of the Si02 curve. 

These two cases thus represent the upper and lower bounds f o r  
d q l d ~  of the various oxides shown i n  Figure 6 .  For both cases 

the extrapolated curves were expressed algebraical ly  using curve 
f i t t i n g  techniques fo r  use i n  our computer software. 

The homogeneous nucleation and growth cha rac te r i s t i c s  
of A1203 are  summarized in  the " T 2 - ~ 3  region" p lo t  shown i n  

Figure 18. Behavior depicted by so l id  l ines  represents the 
case where A1203 i s  assumed t o  have a c?q/dT behavior below Tn 

s i n i l a r  to  that  of S iOp  (see Figure 6 ) .  The dotted l ines  in  

Figure 18 represent the case where the viscosity-temperature 
dependence of B203 i s  assumed below the A l 2 U j  fusion temperature, 

Tm. Since A1203 has such a low viscos i ty  a t  i t s  fusion tempera- 

ture  (melting point) ,  theore t ica l  growth r a t e s  a re  much higher 

than fo r  e i t h e r  pure Si02 o r  B203 Both of the A1203 growth 
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TABLE IV 

MATERIALS PARAMETERS FOR A l ,  07 - 

Tm = 2300°K 
0 

= 2 . 5  A (assumed) 

f = 1 (assumed) 

phf = 26,000 cal mole-' (reference 21) 

Ah£ 
= 11.3 cal  mole ' 1 7 1  

=T rn 

a = 2, 2 . 5 ,  3 (variable) 
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r a t e  curves shown i n  Figure 18 have peak magnitudes o f m l 0  10 
4 "  ~/rnin,compared t o  40 A/min f o r  Si02 (Figure 8) and 2x10 A/rnin 

for  B203 (Figure 14). To i l l u s t r a t e  the very large theore t i ca l  
4 "  growth r a t e  of A1203, the peak growth of B203 (2x10 ~ / r n i n )  i s  

reached by the alumina sys tern within-10 '~ O K  undercooling below 

Tm. The 40 A/min peak growth r a t e  of Si02 is  reached by A1203 
w i t h i n - l ~ - ~ " ~  undercooling below Tm. 

A t  large degrees of undercooling below Tmy i n  the d i f -  
fusion-controlled portion of the growth curve, the steepness of 
the viscosity-temperature r e l a t ion  i s  seen t o  determine the tem- 
perature a t  which the growth r a t e  drops t o  zero. Since we a re  
dealing with the approximate upper and lower boundaries of the  

possible viscosi ty  r e l a t i o n  of alumina below Tm, t h i s  temperature 
(Tg in  a conventional 'IT2-T3 region" nucleation and growth p lo t )  

l i e s  between approximately 1300" and 2050°K. 

The steady s t a t e  homogeneous nucleation r a t e  f o r  A1203 
i s  a l so  shown i n  Figure 18 (for a var iable) .  For the  condition 
where the A1203 viscosi ty  has the general temperature dependence 
of B203 below Tm (steep m/dT) it i s  observed t h a t  homogene~us 

nucleation i s  below the detectable l i m i t .  Where A1203 i s  assumed 
t o  behave more l i k e  Si02, which i s  more probable, i t  i s  observed 

tha t  a detectable level  of homogeneous nucleation occurs f o r  a=3. 
The shaded region shown i n  Figure 18 thus represents the region 

of simultaneous (homogeneous) nucleation and c r y s t a l  growth f o r  

A1203 system. 

If  homogeneous nucleation and subsequent growth a re  

considered, we have shown tha t  t o  avoid c r y s t a l l i z a t i o n  upon 
cooling from the melt the temperature region 1300" t o  1625°K 

must be passed through rapidly.  In pract ice,  however, A1203 

i s  known t o  c rys t3 l l i ze  almost immediately upon cooling below 

the fusion temperatilre, Tm (2300°K). The reason f o r  t h i s  dis-  

crepancy i s  tha t  our ana ly t i ca l  predictions of g lass  forming 
tendency have not accounted f o r  heterogeneous nucleation. In 
the case of heterogeneous nucleation any insoluble inpuri ty  or  
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external  surface w i l l  serve t o  lower the s i z e  of a c r i t i c a l  

embryo and thus e f fec t ive ly  increase temperature T2 (the tempera- 

ture  where detectable nucleation f i r s t  appears upon cooling from 

the melt). This e f f e c t  i s  shown i n  Figure 19. Temperature T2, 

corresponding t o  homogeneous nucleat ion, i s  sh i f t ed  t o  a higher 

temperature (T2 ' ) i f  heterogeneous nucleation is  possible ( i . e . ,  
i f  ex t r ins ic  nucleation s i t e s  are  present).  As i l l u s t r a t e d  i n  
Figure 19, simultaneous heterogeneous nucleation and growth 
can (qual i ta t ive ly)  occur a t  temperatures jus t  below the fusion 
temperature, T,. Most invest igators  of c r y s t a l l i z a t i o n  phenomena 
indicate tha t  nucleation appears t o  i n i t i a t e  heterogeneously 

i n  most materials.  Thus an e x t r i n s i c  property controls  the g lass  
forming tendency of A1203, a t  l e a s t  on e a r t h  where the complete 

elimination of heterogeneous nucleation s i t e s  i q  not possible.  
Complete elimination of external  nucleation s i r e s  i n  A1203 

i s  necessary i f  A1203 glass  is  t o  be obtained s ince the growth 
ra t e s  a re  so high. Therefore, A1203 might be a good candidate 

f o r  space manufacture since processing could be performed con- 
t a ine r l e s s ,  with no externa l  surfaces ac t ing  as nucleation s i t e s .  

Before the space-processing candidacy of A1203 i s  determined, 
however, several  areas must be invest igated i n  more d e t a i l .  

These include: 1) g lass  qual i ty  regarding c r y s t a l  s i z e  and 
conceatration i f  homogeneous nucleation only i s  possible ( i . e . ,  

considering the high growth r a t e s  and a t ta inable  quench r a t e s  

from 1625' t o  1300°K, perhaps enough c r y s t a l l i n e  phase wouid 

be nucleated homogeneously t o  y ie ld  a poor qual i ty  g lass  even 

with space processing), and 2 )  insoluble impurity leve ls  a t t a i n -  

able i n  A1203 precursor mater ials  (  perhaps enough impurity 
s i t e s  w i l l  be avai lable  f o r  heterogeneous nucleation Lo make 

elimination of surface nucleation s i t e s  (crucible wall)  through 

space processing only a second order improvement). Clearly, 

i f  space processing i s  t o  be employed t o  eliminate heterogeneous 

nucleation s i t e s  leading t o  high qual i ty  glasses,  then the mechanisms 

of heterogeneous nucleation must be well  known before candidate 

materials can be chosen with any confidence. 
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6.0  APPLICATIONS TO MORE COMPLEX SYSTEMS 

The nuc lea t ion  and growth k i n e t i c s  t h a t  have been devel- 

oped i n  Section 3 apply i n  general  t o  s i n g l e  component substances 

o r  congruently melt ing ( i .  e . ,  without  composition change) com- 

pounds. The l i qu id - so l id  t ransformat ion process f o r  these  materi-  

a l s  i s  termed non-reconstruct  ive .  No in tera tomic  bonds w i th in  

the  p a r t i c i p a t i n g  molecules need be broken, and only sho r t  range 

d i f fu s ion  processes a r e  required f o r  t he  transformation t o  occur 

a t  the l i q u i d - c r y s t a l  in te rzace .  In  t h i s  ins tance ,  the  mole- 

cu l a r  movements a r e  t r e a t e d  a s  simply a c t i v a t e d  processes,  with 

r a t e  constants  approximately equal  t o  t he  c o e f f i c i e n t  of s e l f -  

d i f fu s ion  i n  the  bulk l i q u i d .  This i s  convenient s i nce  the  s e l f -  

d i f fu s ion  c o e f f i c i e n t  i s  r e l a t e d  t o  the  v i s c o s i t y  through the  

Stokes-Einstein equation,  and v i s cos i t y  da t a  a r e  more r e a d i l y  

a t t a i n a b l e  k i n e t i c  data  than d i f fu s ion  da ta .  

In multicomponent systems, however, t he  l i q u i d  t o  s o l i d  

transformation o f t en  involves bond breaking and/or long-range 

d i f fu s ion  processes,  a s  discussed previously.  In t h i s  ins tance 

the  transformation i s  termed recons t ruc t ive .  In network l i qu ids ,  

such a s  Si02,  in tera tomic  bonds must be broken i n  the  network 

p r i o r  t o  molecular rearrangement. Since t h i s  bond breaking i n  
network l i q u i d s  must a l s o  preceed viscous flow o r  s e l f - d i f f u s i o n ,  

the f r e e  energy of a c t i v a t i o n  f o r  these  processes w i l l  a l s o  be 

appl icable  a s  the k i n e t i c  b a r r i e r  t o  t h e  phase charge process (25) .  
Thus, i n  the  r e c o n s t r ~ c t i v e  t ransformat ion of a  network l i q u i d  

we can approximate the  a c t i v a t i o n  energy and the  r a t e  constant  

i n  the  same manner a s  f o r  non-reconstructive c r y s t a l l i z a t i o n :  

A G '  (nucleat ion)  = p~"(growth)  = dGa (flow a c r i v a t i o n  energy) ( 4 8 )  

and, 

However, i n  recons t ruc t ive  c r y s t a l l i z a t i o n  where a  l a rge  

change i n  composition i s  involved, long range d i f fu s ion  processes 

a r e  required t o  br ing the  appropr ia te  atomic species  t o  the  l i qu id -  
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c rys ta l  in ter face .  In t h i s  case the r a t e  l imi t ing  s t e p  may be 

the diffusion of a  pa r t i cu la r  ( i . e . ,  the slowest moving) species 
i n  the l iquid  matrix. In dealing with nucleation and growth 
k ine t ics  and subsequent g lass  forming tendency of such mater ials ,  

several  methods have been postulated. Uhlmann and Chalrners (8) 
suggest t h a t  f o r  nucleation involving large changes i n  composi- 

t ion  tha t  the k ine t i c  b a r r i e r  t o  nucleation, A G '  i n  Equation (ZO), 
should be taken as  the ac t iva t ion  energy f o r  diffusion of the 
slowest moving component in  the matrix, and t h a t  the pre-exponential 

fac tor ,  n?, should be reduced by the mole f r ac t ion  of the pre- 
c i p i t a t i n g  component. This presents a  problem since the appropri- 
a t e  diffusion data  a re  not a s  readi ly  avai lable  as bulk l iquid 
viscosi ty  data.  Furthermore, the  k ine t i c  term f o r  nucleation, 

A G ' ,  i s  not necessar i ly  equal t o  or even the same order of mag- 
nitude as the k ine t i c  term fo r  growth, AG" i n  Equation (32). 

This i s  due t o  the f a c t  growth i s  governed by atomic movements 

from a great distance from the in ter face ,  whereas the molecular 
movement invol-csd in  the nucleation process occurs r e l a t i v e l y  
near the l iquid-crys ta l  in ter face .  In general, growth in  multi- 

component systems where composition i s  a  var iable  tends t o  be 
diffusion-controlled ra the r  than interface-control led.  Hammel (4) 
has discussed the formulation fo r  computing the volume f rac t ion  

of material  transformed f o r  diffusion controlled growth: 

where D' i s  the diffusion r a t e  constant and S i s  a  supersatura- 

t ion  term. Again, however, diffusion coeff ic ients  a re  reqy'red 

tha t  are  not readi ly avai lable .  

The question a r i s e s ,  then, of how we can predict  the 

glass  forming tendency in  systems where diffusion controlled 

behavior i s  expected due t o  large compositional changes during 

the transformation, and f o r  which the required diffusion data  

are  not avai lable .  H i l l i g  (11,26) has proposed tha t  incorpora- 

t ion  of a  t rans ient  nucleation r a t e  (5) w i l l  adequately account 
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f o r  long range d i f fus ional  e f f e c t s  tha t  occur i n  a reconstructive 

transformation. Hammel ( 4 )  has applied t r ans ien t  nucleation 
analysis (Equations 26, 27, 28) and diffusion controlled growth 

analysl; (Equation 50) t o  predict  the volume f rac t ion  of c r i s to -  
b a l i t e  (Si02) prec ip i ta t ing  from E glass  (13Na02= l l ~ a 0 * 7 6 S i O ~ )  
during cooling from the melt. In the nucleation r a t e  expression 

Hammel used a value of X = .1 (mole f r a c t i o n  of prec ip i ta t ing  
phase i n  the melt, Equation 28) t o  account f o r  the long range 
molecular rearrangement. A value of X equal t o  uni ty i s  employed 
fo r  a pure s ingle  component substance or  a congruently melting 
compound, The determination of the  appropriate value fo r  X t o  

use in  a given reconstructive transformation i s  not c l ea r ly  
defined, however, Hammel (27) and X i l l i g  (26) have proposed 
tha t  X be determined by considerations of 1 )  what the expected 

ra te- l imi t ing  species w i l l  be and 2) i t s  concentration i n  the 
melt. In ~arnmel's treatment of diffusion controlled growth 
described above, a value of S i n  Equation (50) was determined 

using  rank's (28) tabulated values f o r  diffusion controlled 
growth. 

Unfortunately, the s ta te -of - the-ar t  i n  t h i s  nucleation- 
c rys ta l l i za t ion  area has not reached the point where predicted 

transformation k ine t ics  co r re la t e  wel l  with r e a l i t y  i n  a l l  in- 
stances. Especially i n  the case where large composition changes 

accompariy the transformation, we may have t o  r e so r t  t o  empirically 

derived nucleation and growth k ine t i c s  a s  discussed by Uhlmann (12). 
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CONCLUSION AND FUTURE WORK 

The emphasis i n  t h i s  program i s  i n  developing the analy t i -  
c a l  tools  t o  permit predict ion of g lass  forming tendency i n  uni- 

que oxide systems. Unique systems, f o r  our purposes, means 

systems t h a t  a re  not good g lass  formers by conventional Earth- 
processing means. 

A f a i r l y  comprehensive treatment cf nucleation and growth 

k ine t ics  i n  pure substances has been presented, The derived 
t rans£ ormation k ine t i c s  have been successfully applied t o  a well- 

characterized system (s i02) ,  an excel lent  g lass  former (B2O3), 
and a poor glass  former by conventional means ( ~ 1 ~ 0 ~ ) .  The 
k ine t ic  and thermodynamic parameters of viscosi ty  and entropy 
of fusion have been shown t o  be the primary materials parameters 

controll ing g lass  forming tendency. 

For complex multicomponent systems where d i f fus ional  

e f fec t s  predominate, the s ta te -of - the-ar t  i s  not nearly as  f a r  

advanced as f o r  simple substances. The transformation k ine t i c s  
of materials which c r y s t a l l i z e  with a large compositional change 

are  most probably governed by the long range diffusion of the 

slowest moving species. The general lack of spec i f i c  diffusion 

data, however, d i c t a t e  tha t  simplifying assumptions be made, 

such as the va l id i ty  of the Stokes-Einstein equation r e l a t i n g  
bulk diffusion and v iscos i ty .  

With the nucleation and growth k ine t ics  tha t  have been 

developed, we can now begin t o  determine how a processing tech- 

nique such as space processing can be u t i l i z e d  t o  produce tech- 

n ica l ly  s igni f icant  glasses  unobtainable on Earth. Our work 
has lead us t o  the point where we need t o  achieve a be t t e r  under- 

standing of r e a l ,  nonsimple systems. This mainly involves a 
b e t t e r  understanding of diffusion-control led k ine t ics  and e f f e c t s  

of heterogeneous nucleation phenomena. Since adequate l i t e r a t u r e  

data t o  be used i n  our ana ly t i ca l  re la t ionships  a re  non-existent 

we must re ly  on empiricism, A s e r i e s  of ac tua l  melt-quench 
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experiments i n  the laboratory w i l l  permit us t o  co r re la t e  the 

behavior of potent ia l  space processing candidates with the 

theory a?? analyt ics  tha t  have been developed. It i s  believed 

tha t  the coupling of our k ine t i c  equations with empirical  evi-  

dence and post -quench examinat ion w i l l  permit reasonably accurate 
predictions of the glass forming tendency i n  unique systems. 
Our goal i s  t o  be able t o  predict  the l eve l  of product improve- 

ment t h a t  i s  obtainable through in-space materials processing. 

To achieve t h i s  objective we s h a l l  employ our ideal ized 
k ine t ics  t o  t r y  t o  extend the g lass  forming region of calcium 
aluminate, Y203, Ga203, and mull i te ,  for  instance. The subject 
of glassy mull i te  compositions i s  current ly  receiving a t t en t ion  

i n  the l i t e r a t u r e ,  and calcium aluminate has appl icat ion ( for  

high alumina concentrations) i n  i r - t ransmi t t ing  systems ( i . e . ,  

sapphire i s  a well known ir- t ransmi t t ing  material.). 

To f a c i l i t a t e  the corre la t ion  of theory and experiment 
we a re  current ly  working with the North American Rockwell group* 

whose program e n t a i l s  the production of unique glasses  by a l a se r  

spin melting technique. In t h i s  cooperative e f f o r t  we s h a l l  
conduct a se r i e s  of experiments designed t o  a i d  i n  the determina- 

t ion  of candidate space processing materials,  and t o  predict  

the level  of product improvement t o  be expected i n  space manufac- 

ture .  S ~ e c i f i c a l l y ,  the experimental observations w i l l  help us 

t o  f i t  heterogeneous nucleation and diffusion control led behavior 

i n t o  our k ine t i c  equations i n  the absence of the required l i t e r a -  

ture  data (such as  surface energies,  wet tabi l i ty ,  and diffusion 

coe f f i c i en t s ) .  Areas of inves t iga t ion  i n  t h i s  cooperative e f f o r t  

include 1)  degree of superheat (above Tm) necessary t o  eliminate 

volume heterogeneous nucleation (impurity) s i t e s ,  2 )  effect iveness  

of containerless processing in  eliminating surface heterogeneous 

nucleation s i t e s ,  3 )  cleanl iness  of the sample environment (at-  
mosphere) required i n  space processing of unique materials,  e t c .  

* NASA Contract NAS8-28991, R. A. Happe, Pr inciple  Invest igator .  
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The results of this  work w i l l  appear in subsequent progress 
reports . 
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